
iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

Muzhgan Kamal, Volume 10 Issue 4, pp 1-7, April 2022

Application of Reinforcement Learning in

Code Repair
Author: Young Kim

Korea International School, Pangyo, Korea

Abstract

Novice coders very frequently come across compile

errors and learning to code without syntactical errors

or debugging based on the given error messages can

be a challenging task. In this study, I created a

machine learning model that collects compile error

messages of codes created by novice students, learns

them using an LSTM recurrent neural network model,

and repairs them correctly. Training data were

collected from an online judge system, in which

functioning codes were purposely and systematically

modified to become erroneous. After the tokenization

preprocessing step, I used LSTM to repair the

erroneous parts of the given code. It was confirmed

that the machine learning model created in this study

solved 43% of the errors generated by novice

programmers. Specifically, relatively simple errors

including missing semicolons or unmatched brackets

could be fixed with high accuracies of 78% and 73%,

respectively. The results of this study highlight those

errors of simple syntax are easy to fix with artificial

intelligence, whereas those that depend more on

context and user intention are harder to repair.

Key Words: Code repair, Long Short-Term Memory

(LSTM), Recurrent Neural Networks (RNN),

Tokenization

Introduction

1.1 Motivation

During my time at the UPenn ESAP computer science

summer program, I was exposed to students of all types of

programming backgrounds in which I realized that a large

portion of students very often makes small mistakes in the

form of basic syntax or structure of their code. When students

are given solely a compile error message, I noticed that it’s

very difficult to diagnose the specific error of one’s code,

especially if you’re new to programming. I further realized

that in most cases students aren’t the most challenged when

forming the logic behind a program, but rather its

implementation. Reflecting upon when I first started

programming, even the smallest syntactic error such as

forgetting to add a semicolon after each line posed a barrier

for me to grow as a programmer. At the same time, I was

learning about natural language processing using LSTM in

machine learning, and I thought that it might be possible to

create a program that automatically corrects these compilation

errors by learning the mistakes commonly made by novice

programmers. This tool, rather than a typical program editing

tool, will make it much easier and more convenient for novice

students to find the location of errors and how to fix them. As

a result, I decided to create a machine learning model that

helps novice coders automatically correct the many syntax

errors often encountered by programmers. With this tool,

novice coders will find programming more welcoming and

easier to learn by themselves. During the time of development

of my machine learning model, I explored the various types

of compile errors that programmers face and learned about the

limits of machine learning when fixing these errors.

1.2 Problem

According to a case study by Google, the median resolution

time of build errors was 5 and 12 minutes for C++ and Java,

respectively, and can vary by an order of magnitude across

error types. An even larger amount of time is dedicated to

debugging episodes for novice coders. According to the

George Mason University in figure 1, debugging episodes

occupy a large portion of most programming sessions,

displaying prevalent inefficient use of time. Furthermore, the

most frequent types of errors were the use of undeclared

variables and misdeclaration of variables – errors that

typically require minimal lines of code to repair yet has been

shown to be very difficult to diagnose as seen in figure 2.

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 2

[Figure 1]. Time distribution in 15 programming sessions.

[Figure 2]. Reason for build errors in Java and C++

2. Background Knowledge

2.1 Reinforcement Learning

There are three (3) main machine learning training

methods: supervised learning, unsupervised learning, and

reinforcement learning. In supervised learning, input values

and their respective labels are already given, meaning that the

model’s weights can be adjusted to best fit the input data and

their respective outcomes. On the contrary, in unsupervised

learning, data is unlabeled meaning that other methods

including pattern detection, clustering, and PCA/anomaly

detection must be used. Reinforcement learning (RL) is quite

different from the other learning methods. In RL, the machine

learning agent is faced with a game-like environment, where

complex and uncertain decisions must be made. As seen in

figure 1, after each iteration, the artificial intelligence either

receives a “reward” or a “punishment” for the agent’s

decisions.

[Figure 3]. Reinforcement Learning Model

The only information that the programmer provides to the

machine learning model is the reward policy. From here, the

artificial intelligence will run a large series of decisions with a

plethora of failures and occasional successes to learn

sophisticated tactics and approaches. Reinforcement learning

isn’t seen exclusively in computer science. As seen in figure

2, the fundamental idea of dog training aligns with that of

reinforcement learning. No dog instinctively knows that

running to get a stick is the correct action, but once the trainer

provides a reward once the task is succeeded, the dog learns

that running to get the stick will result in a reward.

[Figure 4]. Reinforcement learning in dog training

2.2 Recurrent Neural Networks (RNN)

As you read this sentence, your understanding of each word

is based on the understanding of the words that come before

it. Naturally, you don’t simply perceive a word by its

individual meaning, but rather the role it plays within a

sentence. However, this task is very difficult for traditional

neural networks – the base of deep learning algorithms – as

they don’t have access to previous points of the data set. This

is where recurrent neural networks (RNN) serve a huge role.

RNN is a specific type of network that permits the persistence

of information.

However, there is one downside to RNNs. RNNs are

extremely good at analyzing recent information to perform a

certain task. This means that when correcting code, as long as

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 3

the error lies within reach of the RNN model’s code analysis,

the error can be fixed. For example, given the example below,

RNNs can isolate the error to line 7 where “a = b” should be

“a == b.”

[Figure 5]. Case where RNN is effective

[Figure 6]. Portrayal of short-term dependencies in RNNs

However, as soon as the compile error grows more complex

with a wider “radius of error”, RNNs fail to gather all the

context required to fix the error. For example, for the example

below, it becomes very difficult for RNNs to fix the compile

error given only recent information. RNNs would think that

the error lies within line 9 of the code, whereas the actual error

originates starting from line 6. Syntactic errors regarding

variable types, therefore, become very difficult to diagnose

and fix, as the sources of error lie on several different lines.

[Figure 6]. Case where RNN is ineffective

2.3 Long Short-Term Memory Networks (LSTM)

Fortunately, there exists a specific type of RNN that is capable

of learning long-term dependencies: Long Short-Term

Memory networks (LSTM). LSTMs are specifically

designed to store information for long periods of time. Similar

to traditional RNNs, LSTMs have a repeating chain-like

structure. However, unlike regular RNNs that only have a

single neural network layer, LSTMs are divided into four: The

forget gate layer, input gate layer, update layer, and output

layer.

[Figure 7]. Repeating module in an LSTM containing four

interacting layers

Due to this preservation of information unique to

LSTM, it is often used in natural language processing and

image/video classification where data is sequential. One

example of the application of LSTMs is next-frame video

predictions. One specific application of LSTM is in language

translation. A certain word or phrase can have several possible

meanings, and the appropriate definition within the sentence

depends on the context around it. For example, the word

“crane” can either mean the construction machine or the bird.

Depending on what comes before and after the word, its

definition can change drastically. The importance of context

is important in identifying code errors as well. As seen in

figure 6, it is impossible to diagnose the specific reason for the

error just by looking at line 9 where the error was identified.

Although there are some cases where errors can be isolated to

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 4

a single line in the code, in most cases the error accumulates

starting from earlier points of the code.

[Figure 8]. Portrayal of long-term dependencies in LSTMs

3. Research Methods

3.1 Overall System Structure

[Figure 9]. Code Repair System Structure Flow Chart

Figure 9 shows the main components of this project’s

structure. The user’s erroneous code first goes through a

tokenization preprocessing step, in which each word in the

code is scanned and categorized. This information is then sent

to the Long Short-Term Memory (LSTM) network. This

network is trained using training data gathered from an online

judge system. The LSTM model then corrects the input code

and provides the user with a repaired version.

3.2 Data Preparation

3.2.1 Data Gathering Process

[Figure 10]. Codeforces Problem 4A – Watermelon

A large amount of erroneous and correct codes are needed to

train the artificial intelligence model. In order to do this, I used

an online judge system called CodeForces. Here, I chose two

highly popular problems called “4A - Watermelon” and

“231A – Team” to gather data. “Watermelon” was

specifically chosen as the problem-solution required the use

of an if statement. “Team” was specifically chosen as for and

while loops were required in the problem solution.

As this study is targeted at code repair for C++, only

submissions written in C++ were collected. In “Watermelon”,

there was a total of 268,598 total attempts shown in the

submission history, with a total of 26,472 compilation error

codes. “Team” had a total of 158,955 submissions and 5,322

compilation error codes.

3.2.2 Code Breaking

At first, I tried collecting erroneous code and planned on

making a corrected version myself. However, this required

manual correction of each code, which would be very time-

consuming due to the magnitude of erroneous codes. Instead,

I came up with the idea to intentionally break corrected codes

using in a systematic way. Referring to previous works, I was

able to learn that novice coders make 5 main types of errors:

1) Missing Semicolon 2) Unmatched Brackets 3) Misplaced

Symbol/Operator 4) Calling of a function 5) Undefined

Variable. From here, I made a “code Breaker” that creates

errors for each type. 200 codes were made for each type, with

a total of 1,000 codes included in the training data.

[Figure 11]. Example of bracket and semicolon code breaking

3.3 Tokenization

Accuracy is greatly reduced when code is given directly to

a machine learning model in Natural Language Processing

(NLP). Therefore, it is imperative to implement preprocessing

in advance. Usually, the input code goes through tokenization,

cleaning, and normalization processes. In our study,

“Tokenization” refers to the process of dividing a given text

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 5

into several units called “tokens”. When a program code is

tokenized, each word is divided into three main categories: 1)

keywords including “if” and “for” 2) variable names such as

“a” or “b” 3) function names such as “printf” and “scanf.”

During this process, inputs such as gaps, indents, and variable

names that do not give meaning and context to the code are

ignored, leaving only grammatical elements. This process

helps the LSTM comprehend the input code in subsequent

steps. As the programming language doesn’t require cleaning

and normalization, effective tokenization is important for later

processes to work faultlessly. The C++ coding language

already has several premade tokenizers. In this study, we will

be using a publicly available GitHub open-source tokenizer.

[Figure 12]. Example code for tokenization

[Figure 13]. Tokenization of code shown in Figure 9

As seen in figure 10, each character and string is scanned

through in the tokenization preprocessing step. The

aforementioned token categories (keywords, variable names,

function names) are shown.

3.4 Machine Learning Model, LSTM Structure

A very specific type of machine learning model is required

to accomplish code repair. Compile error messages are very

important hints when a human attempts to fix compile errors.

Therefore, our machine learning model first gathers the

compile error message once an erroneous code is given.

However, it is very common that the line indicated in the

compile error message isn’t the exact line the actual error

originates from. Instead, when we scan ± 1 line from the

indicated line number, the number of cases for which an error

is diagnosed significantly increases. Therefore, our program

will identify which line the error message diagnoses the error

to be, then scans the previous, current, and subsequent lines

for the cause of error.

To eliminate any insignificant portions of the input (such

as variable names), tokenization was applied to the 3

aforementioned lines. The artificial intelligence model scans

through each token so far, and makes a prediction of what the

subsequent token will be. If the actual token from the input

code is different from the prediction, the model infers that this

is the cause of the error. Refer to figure 13 for a code example.

[Figure 14]. Sample Code

As seen in figure 13, the compile error message indicates

that an error is generated on line 8 with “printf(%d,%d, a, b);.”

However, one can quickly notice that the actual cause of the

error is from line 7 (previous line) where integer “b” was not

properly declared. Our program is structured in a way that

scanning starts from the declaration of integer b, and the two

subsequent lines. Looking at the token sequence, our model

will be able to discover that int, variable_name must be

followed by a semicolon, which is not the case. Therefore, our

machine learning code will add a semicolon and finish the

repair job.

Furthermore, this model allows the repair of several lines

of error if the aforementioned job is repeated iteratively. The

first identified error will be fixed, and when the compiling yet

again fails, the same job will be repeated to identify and repair

the next error within the input code. However, when the error

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 6

is not fixed by its 5th iteration of repair, the code will end and

conclude that the repair was unsuccessful.

4. Experiments

4.1 Experimental Procedure

In order to calculate the accuracy of our repair code, 40

correct answer codes were randomly selected among 410,000

actual error cases collected from Codeforces. Using the “code

breaker” discussed in 3.2.2, five erroneous versions of each

correct code was made, representing each type of error. In

total, there were 1,000 codes in the final data set, which was

further divided into training (70%), validation (10%), and test

(20%) sets. Validation and test codes were randomly picked

from the data set. The models were trained by minimizing the

class negative likelihood loss with an open-source Torch

implementation of a standard sequence-to-sequence model.

All learning models were created using Python, and the

process of training was conducted using a CentOS Linux

Machine with an Intel Zeon E5-2680 V3 (@2.65GHz) Dual-

core CPU, paired with 265GB of memory.

4.2 Experimental Results

Figure 14 shows a bar graph representing the accuracy of

the output of our model to the actual correct code. The results

show that our model was able to accurately repair 43% of

errors made by novice coders. Specifically, syntax-related

errors such as missing semicolons or unmatched brackets had

high accuracies of 78% and 73% respectively. However,

relatively more complex errors involving functions and

variables had a low accuracy rate of 20%.

[Figure 15]. Error-specific results for accuracy of code repair

[Figure 16]. Demonstration of iterative code repair

One interesting result is that one can witness each error

within a code being repaired iteratively. In the example shown

in figure 15, there are two main errors: 1) missing semicolon

in line four 2) missing “=” in line 7. As seen, each error is fixed

chronologically.

[Figure 17]. Demonstration of iterative code repair

An example of a failed attempt of repair is shown above.

The left image shows how the variable “num” is not declared.

However, our model goes through a tokenization

preprocessing phase which is why there is no information on

any variable names. This makes it difficult to appropriately

declare the “num” variable. As expected, the “num” variable

isn’t declared as shown in the right image, and the printf

function is misused.

5. Conclusion

This study is significant mainly due to the growing number

of coders and demand for software in the future. As we

approach a technology-driven world, more and more

individuals will need to learn how to code, and compile error

messages in the status quo are misleading and often unhelpful.

This repair tool will hopefully help novice coders genuinely

enjoy writing code without the frustration of extended

debugging episodes.

Through the experimental results, we can confirm that a

functioning repair software was made that is capable of fixing

erroneous code for novice students. However, it fails to

effectively fix highly complicated codes as it either fails to

diagnose the error within the input code or creates a solution

that differs from the user’s original intent for the code, which

makes future areas of study.

iJournals: International Journal of Software & Hardware Research in Engineering (IJSHRE)

 ISSN-2347-4890

Volume 10 Issue 4 April 2022

© 2022, iJournals All Rights Reserved

www.ijournals.in
Page 7

6. References

[1] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum,

Edward Aftandilia, Robert Bowdidge, “Programmers’

Build Errors: A Case Study (at Google)” ICSE 2014:

Proceedings of the 36th International Conference on

Software Engineering, 724-734, 2014

[2] Abdulaziz Alaboudi, Thomas LaToza, “An

Exploratory Study of Debugging Episodes”,

Available From:

https://www.researchgate.net/publication/351354680

_An_Exploratory_Study_of_Debugging_Episodes

(accessed Aug, 11, 2021)

[3] Kaelbling, Leslie P.; Littman, Michael L.; Moore,

Andrew W. "Reinforcement Learning: A Survey".

Journal of Artificial Intelligence Research. 4: 237-285,

1996

[4] Dupond, Samuel, "A thorough review on the current

advance of neural network structures". Annual

Reviews in Control. 14: 200–230, 2019

[5] Sepp Hochreiter; Jürgen Schmidhuber, "Long short-

term memory". Neural Computation. 9 (8): 1735–

1780, 1997

[6] Trim, Craig (Jan 23, 2013). "The Art of Tokenization".

Developer Works. IBM. Available From:

https://www.ibm.com/developerworks/community/bl

ogs/nlp/entry/tokenization?lang=en (accessed June,

20, 2021)

[7] guillaumenkln, OpenNMT/Tokenizer, Available

From: https://github.com/OpenNMT/Tokenizer

(accessed July, 03, 2021)

https://www.researchgate.net/publication/351354680_An_Exploratory_Study_of_Debugging_Episodes
https://www.researchgate.net/publication/351354680_An_Exploratory_Study_of_Debugging_Episodes
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
https://github.com/OpenNMT/Tokenizer

