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Abstract 

Novice coders very frequently come across compile 

errors and learning to code without syntactical errors 

or debugging based on the given error messages can 

be a challenging task. In this study, I created a 

machine learning model that collects compile error 

messages of codes created by novice students, learns 

them using an LSTM recurrent neural network model, 

and repairs them correctly. Training data were 

collected from an online judge system, in which 

functioning codes were purposely and systematically 

modified to become erroneous. After the tokenization 

preprocessing step, I used LSTM to repair the 

erroneous parts of the given code. It was confirmed 

that the machine learning model created in this study 

solved 43% of the errors generated by novice 

programmers. Specifically, relatively simple errors 

including missing semicolons or unmatched brackets 

could be fixed with high accuracies of 78% and 73%, 

respectively. The results of this study highlight those 

errors of simple syntax are easy to fix with artificial 

intelligence, whereas those that depend more on 

context and user intention are harder to repair. 
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Introduction 

 

1.1 Motivation 

During my time at the UPenn ESAP computer science 

summer program, I was exposed to students of all types of 

programming backgrounds in which I realized that a large 

portion of students very often makes small mistakes in the 

form of basic syntax or structure of their code. When students 

are given solely a compile error message, I noticed that it’s 

very difficult to diagnose the specific error of one’s code, 

especially if you’re new to programming. I further realized 

that in most cases students aren’t the most challenged when 

forming the logic behind a program, but rather its 

implementation. Reflecting upon when I first started 

programming, even the smallest syntactic error such as 

forgetting to add a semicolon after each line posed a barrier 

for me to grow as a programmer. At the same time, I was 

learning about natural language processing using LSTM in 

machine learning, and I thought that it might be possible to 

create a program that automatically corrects these compilation 

errors by learning the mistakes commonly made by novice 

programmers. This tool, rather than a typical program editing 

tool, will make it much easier and more convenient for novice 

students to find the location of errors and how to fix them. As 

a result, I decided to create a machine learning model that 

helps novice coders automatically correct the many syntax 

errors often encountered by programmers. With this tool, 

novice coders will find programming more welcoming and 

easier to learn by themselves. During the time of development 

of my machine learning model, I explored the various types 

of compile errors that programmers face and learned about the 

limits of machine learning when fixing these errors. 

 

1.2 Problem 

According to a case study by Google, the median resolution 

time of build errors was 5 and 12 minutes for C++ and Java, 

respectively, and can vary by an order of magnitude across 

error types. An even larger amount of time is dedicated to 

debugging episodes for novice coders. According to the 

George Mason University in figure 1, debugging episodes 

occupy a large portion of most programming sessions, 

displaying prevalent inefficient use of time. Furthermore, the 

most frequent types of errors were the use of undeclared 

variables and misdeclaration of variables – errors that 

typically require minimal lines of code to repair yet has been 

shown to be very difficult to diagnose as seen in figure 2. 
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[Figure 1]. Time distribution in 15 programming sessions. 

 

 
 

[Figure 2]. Reason for build errors in Java and C++ 

 

2. Background Knowledge 

 

2.1 Reinforcement Learning 

There are three (3) main machine learning training 

methods: supervised learning, unsupervised learning, and 

reinforcement learning. In supervised learning, input values 

and their respective labels are already given, meaning that the 

model’s weights can be adjusted to best fit the input data and 

their respective outcomes. On the contrary, in unsupervised 

learning, data is unlabeled meaning that other methods 

including pattern detection, clustering, and PCA/anomaly 

detection must be used. Reinforcement learning (RL) is quite 

different from the other learning methods. In RL, the machine 

learning agent is faced with a game-like environment, where 

complex and uncertain decisions must be made. As seen in 

figure 1, after each iteration, the artificial intelligence either 

receives a “reward” or a “punishment” for the agent’s 

decisions. 

 

 

 
[Figure 3]. Reinforcement Learning Model 

 

The only information that the programmer provides to the 

machine learning model is the reward policy. From here, the 

artificial intelligence will run a large series of decisions with a 

plethora of failures and occasional successes to learn 

sophisticated tactics and approaches. Reinforcement learning 

isn’t seen exclusively in computer science. As seen in figure 

2, the fundamental idea of dog training aligns with that of 

reinforcement learning. No dog instinctively knows that 

running to get a stick is the correct action, but once the trainer 

provides a reward once the task is succeeded, the dog learns 

that running to get the stick will result in a reward. 

[Figure 4]. Reinforcement learning in dog training 

 

2.2 Recurrent Neural Networks (RNN) 

As you read this sentence, your understanding of each word 

is based on the understanding of the words that come before 

it. Naturally, you don’t simply perceive a word by its 

individual meaning, but rather the role it plays within a 

sentence. However, this task is very difficult for traditional 

neural networks – the base of deep learning algorithms – as 

they don’t have access to previous points of the data set. This 

is where recurrent neural networks (RNN) serve a huge role. 

RNN is a specific type of network that permits the persistence 

of information. 

 

However, there is one downside to RNNs. RNNs are 

extremely good at analyzing recent information to perform a 

certain task. This means that when correcting code, as long as 
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the error lies within reach of the RNN model’s code analysis, 

the error can be fixed. For example, given the example below, 

RNNs can isolate the error to line 7 where “a = b” should be 

“a == b.” 

 

 
 

[Figure 5]. Case where RNN is effective 

 

 
 

[Figure 6]. Portrayal of short-term dependencies in RNNs 

 

However, as soon as the compile error grows more complex 

with a wider “radius of error”, RNNs fail to gather all the 

context required to fix the error. For example, for the example 

below, it becomes very difficult for RNNs to fix the compile 

error given only recent information. RNNs would think that 

the error lies within line 9 of the code, whereas the actual error 

originates starting from line 6. Syntactic errors regarding 

variable types, therefore, become very difficult to diagnose 

and fix, as the sources of error lie on several different lines. 

 

 
[Figure 6]. Case where RNN is ineffective 

 

2.3 Long Short-Term Memory Networks (LSTM) 

Fortunately, there exists a specific type of RNN that is capable 

of learning long-term dependencies: Long Short-Term 

Memory networks (LSTM). LSTMs are specifically 

designed to store information for long periods of time. Similar 

to traditional RNNs, LSTMs have a repeating chain-like 

structure. However, unlike regular RNNs that only have a 

single neural network layer, LSTMs are divided into four: The 

forget gate layer, input gate layer, update layer, and output 

layer. 

 
 

[Figure 7]. Repeating module in an LSTM containing four 

interacting layers 

Due to this preservation of information unique to 

LSTM, it is often used in natural language processing and 

image/video classification where data is sequential. One 

example of the application of LSTMs is next-frame video 

predictions. One specific application of LSTM is in language 

translation. A certain word or phrase can have several possible 

meanings, and the appropriate definition within the sentence 

depends on the context around it. For example, the word 

“crane” can either mean the construction machine or the bird. 

Depending on what comes before and after the word, its 

definition can change drastically. The importance of context 

is important in identifying code errors as well. As seen in 

figure 6, it is impossible to diagnose the specific reason for the 

error just by looking at line 9 where the error was identified. 

Although there are some cases where errors can be isolated to 
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a single line in the code, in most cases the error accumulates 

starting from earlier points of the code. 

 

 
[Figure 8]. Portrayal of long-term dependencies in LSTMs 

 

 

3. Research Methods 

 

3.1 Overall System Structure 

 
[Figure 9]. Code Repair System Structure Flow Chart 

 

Figure 9 shows the main components of this project’s 

structure. The user’s erroneous code first goes through a 

tokenization preprocessing step, in which each word in the 

code is scanned and categorized. This information is then sent 

to the Long Short-Term Memory (LSTM) network. This 

network is trained using training data gathered from an online 

judge system. The LSTM model then corrects the input code 

and provides the user with a repaired version. 

 

3.2 Data Preparation 

3.2.1 Data Gathering Process 

 

 

[Figure 10]. Codeforces Problem 4A – Watermelon 

 

A large amount of erroneous and correct codes are needed to 

train the artificial intelligence model. In order to do this, I used 

an online judge system called CodeForces. Here, I chose two 

highly popular problems called “4A - Watermelon” and 

“231A – Team” to gather data. “Watermelon” was 

specifically chosen as the problem-solution required the use 

of an if statement. “Team” was specifically chosen as for and 

while loops were required in the problem solution. 

 

As this study is targeted at code repair for C++, only 

submissions written in C++ were collected. In “Watermelon”, 

there was a total of 268,598 total attempts shown in the 

submission history, with a total of 26,472 compilation error 

codes. “Team” had a total of 158,955 submissions and 5,322 

compilation error codes. 

 

3.2.2 Code Breaking 

At first, I tried collecting erroneous code and planned on 

making a corrected version myself. However, this required 

manual correction of each code, which would be very time-

consuming due to the magnitude of erroneous codes. Instead, 

I came up with the idea to intentionally break corrected codes 

using in a systematic way. Referring to previous works, I was 

able to learn that novice coders make 5 main types of errors: 

1) Missing Semicolon 2) Unmatched Brackets 3) Misplaced 

Symbol/Operator 4) Calling of a function 5) Undefined 

Variable. From here, I made a “code Breaker” that creates 

errors for each type. 200 codes were made for each type, with 

a total of 1,000 codes included in the training data. 

 

 
[Figure 11]. Example of bracket and semicolon code breaking 

 

3.3 Tokenization 

Accuracy is greatly reduced when code is given directly to 

a machine learning model in Natural Language Processing 

(NLP). Therefore, it is imperative to implement preprocessing 

in advance. Usually, the input code goes through tokenization, 

cleaning, and normalization processes. In our study, 

“Tokenization” refers to the process of dividing a given text 
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into several units called “tokens”. When a program code is 

tokenized, each word is divided into three main categories: 1) 

keywords including “if” and “for” 2) variable names such as 

“a” or “b” 3) function names such as “printf” and “scanf.” 

During this process, inputs such as gaps, indents, and variable 

names that do not give meaning and context to the code are 

ignored, leaving only grammatical elements. This process 

helps the LSTM comprehend the input code in subsequent 

steps. As the programming language doesn’t require cleaning 

and normalization, effective tokenization is important for later 

processes to work faultlessly. The C++ coding language 

already has several premade tokenizers. In this study, we will 

be using a publicly available GitHub open-source tokenizer. 

 

 
[Figure 12]. Example code for tokenization 

 

 
[Figure 13]. Tokenization of code shown in Figure 9 

 

As seen in figure 10, each character and string is scanned 

through in the tokenization preprocessing step. The 

aforementioned token categories (keywords, variable names, 

function names) are shown. 

 

3.4 Machine Learning Model, LSTM Structure 

 

A very specific type of machine learning model is required 

to accomplish code repair. Compile error messages are very 

important hints when a human attempts to fix compile errors. 

Therefore, our machine learning model first gathers the 

compile error message once an erroneous code is given. 

However, it is very common that the line indicated in the 

compile error message isn’t the exact line the actual error 

originates from. Instead, when we scan ± 1 line from the 

indicated line number, the number of cases for which an error 

is diagnosed significantly increases. Therefore, our program 

will identify which line the error message diagnoses the error 

to be, then scans the previous, current, and subsequent lines 

for the cause of error. 

 

To eliminate any insignificant portions of the input (such 

as variable names), tokenization was applied to the 3 

aforementioned lines. The artificial intelligence model scans 

through each token so far, and makes a prediction of what the 

subsequent token will be. If the actual token from the input 

code is different from the prediction, the model infers that this 

is the cause of the error. Refer to figure 13 for a code example. 

 

 
 

[Figure 14]. Sample Code 

 

As seen in figure 13, the compile error message indicates 

that an error is generated on line 8 with “printf(%d,%d, a, b);.” 

However, one can quickly notice that the actual cause of the 

error is from line 7 (previous line) where integer “b” was not 

properly declared. Our program is structured in a way that 

scanning starts from the declaration of integer b, and the two 

subsequent lines. Looking at the token sequence, our model 

will be able to discover that int, variable_name must be 

followed by a semicolon, which is not the case. Therefore, our 

machine learning code will add a semicolon and finish the 

repair job. 

 

Furthermore, this model allows the repair of several lines 

of error if the aforementioned job is repeated iteratively. The 

first identified error will be fixed, and when the compiling yet 

again fails, the same job will be repeated to identify and repair 

the next error within the input code. However, when the error 
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is not fixed by its 5th iteration of repair, the code will end and 

conclude that the repair was unsuccessful. 

 

4. Experiments 

 

4.1 Experimental Procedure 

In order to calculate the accuracy of our repair code, 40 

correct answer codes were randomly selected among 410,000 

actual error cases collected from Codeforces. Using the “code 

breaker” discussed in 3.2.2, five erroneous versions of each 

correct code was made, representing each type of error. In 

total, there were 1,000 codes in the final data set, which was 

further divided into training (70%), validation (10%), and test 

(20%) sets. Validation and test codes were randomly picked 

from the data set. The models were trained by minimizing the 

class negative likelihood loss with an open-source Torch 

implementation of a standard sequence-to-sequence model. 

All learning models were created using Python, and the 

process of training was conducted using a CentOS Linux 

Machine with an Intel Zeon E5-2680 V3 (@2.65GHz) Dual-

core CPU, paired with 265GB of memory. 

 

4.2 Experimental Results 

Figure 14 shows a bar graph representing the accuracy of 

the output of our model to the actual correct code. The results 

show that our model was able to accurately repair 43% of 

errors made by novice coders. Specifically, syntax-related 

errors such as missing semicolons or unmatched brackets had 

high accuracies of 78% and 73% respectively. However, 

relatively more complex errors involving functions and 

variables had a low accuracy rate of 20%. 

 

 
[Figure 15]. Error-specific results for accuracy of code repair 

 

 

 

 

 
[Figure 16]. Demonstration of iterative code repair 

 

One interesting result is that one can witness each error 

within a code being repaired iteratively. In the example shown 

in figure 15, there are two main errors: 1) missing semicolon 

in line four 2) missing “=” in line 7. As seen, each error is fixed 

chronologically. 

 

 
[Figure 17]. Demonstration of iterative code repair 

 

An example of a failed attempt of repair is shown above. 

The left image shows how the variable “num” is not declared. 

However, our model goes through a tokenization 

preprocessing phase which is why there is no information on 

any variable names. This makes it difficult to appropriately 

declare the “num” variable. As expected, the “num” variable 

isn’t declared as shown in the right image, and the printf 

function is misused. 

 

5. Conclusion 

 

This study is significant mainly due to the growing number 

of coders and demand for software in the future. As we 

approach a technology-driven world, more and more 

individuals will need to learn how to code, and compile error 

messages in the status quo are misleading and often unhelpful. 

This repair tool will hopefully help novice coders genuinely 

enjoy writing code without the frustration of extended 

debugging episodes. 

 

Through the experimental results, we can confirm that a 

functioning repair software was made that is capable of fixing 

erroneous code for novice students. However, it fails to 

effectively fix highly complicated codes as it either fails to 

diagnose the error within the input code or creates a solution 

that differs from the user’s original intent for the code, which 

makes future areas of study. 
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