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Abstract 

 

The increase in plug-in electric vehicles (PEVs) is likely to see a noteworthy impact on the distribution system 

due to high electric power consumption during charging and uncertainty in charging behavior. To address this 

problem, the present work mainly focuses on optimal integration of distributed generators (DG) into radial 

distribution systems in the presence of PEV loads with their charging behavior under daily load pattern 

including load models by considering the daily (24 h) power loss and voltage improvement of the system as 

objectives for better system performance. Design/methodology/approach: To achieve the desired outcomes, an 

efficient weighted factor multi-objective function is modeled. Particle Swarm Optimization (PSO) and Butterfly 

Optimization (BO) algorithms are selected and implemented to minimize the objectives of the system. A 

repetitive backward-forward sweep-based load flow has been introduced to calculate the daily power loss and 

bus voltages of the radial distribution system. The simulations are carried out using MATLAB software. 

Findings: The simulation outcomes reveal that the proposed approach definitely improved the system 

performance in all aspects. Among PSO and BO, BO is comparatively successful in achieving the desired 

objectives. Originality/value: The main contribution of this paper is the formulation of the multi-objective 

function that can address daily active power loss and voltage deviation under 24-h load pattern including 

grouping of residential, industrial and commercial loads. Introduction of repetitive backward-forward sweep-

based load flow and the modeling of PEV load with two different charging scenarios. 
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1.  Introduction 

It is vital to use renewable energy as a fossil fuel 

substitute due to the extreme exploitation of 

outdated fossil fuels, which has led to more serious 

ecological pollution issues like energy resource 

scarcity and climate change, as the energy industry 

has developed sustainably [1]. The energy crisis 

has been lessened in recent years by the extensive 

adoption of renewable energy causes and new 

energy technology, but these developments have 

also presented difficult problems for control system 

optimization formation and subordinate energy 

rational operation. For example, in addition to 

problems with harmonic pollution, three-phase 

voltage imbalance, and transformer aging, the time-

space dimensional decentralization of EV charging 

and the random and intermittent nature of power 

generated by WTs or PVs create more uncertainty 

than ever before for current DN operations [5–3]. 

Specifically, the extended PVD of the load curve 

increases the power system demands. It is 

commonly acknowledged that two crucial measures 

of the operational state of the DN are safety and 

economy, which are expressed as node voltage 

excursion and active power loss, respectively [9]. 

Due to the significant peak load caused by all of 

the EV users' combined charging habits, low 

voltage or even blackout is likely to occur, which 

also increases system loss. Guiding principles for 

coordinated regulation should be put into place in 

order to meet consumer needs for electricity and 

transportation while avoiding the negative 

consequences of integrated renewable energy and 

EVs. The Chinese government has recently heavily 

sponsored the IES and turned it into a research 

hotspot for two key reasons: the integration of 

renewable energy and the coordinated development 

of the multi-energy system. In light of the IES, the 

supply-oriented management idea has been 

superseded by the demand-oriented management 

concept for the DN, which combines the elements 

of distributed generation control, real-time 

monitoring, information sharing, and market 

transactions. Better scheduling and 

accommodations are made possible by this, 

allowing distributed energy equipment to be more 

diverse. 

The BESS is now an essential supporting 

component to increase the compatibility near for 

the PV and WT of the DN in order to stabilize the 

output volatility of renewable control generation. 

Through electrochemical charging and discharging, 

the BESS transfers electricity, increasing the use of 

renewable vigorbases and their economic benefits 
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for the local grid while also enhancing power 

supply stability. To lessen high fluctuations 

connected to DG outputs, a hierarchical 

coordinated control method based on the MPC 

framework has been developed utilizing the fast-

response BESS [6]. Furthermore, when 

incorporated into a vehicle-to-grid (V2G) system, 

EVs can also be seen as controllable power 

resources to provide bidirectional power flow 

between the building cluster and DN. 

33-BUS TEST SYSTEM 

Information about the updated 33-bus test system 

depicted in Fig. 1 is contained in this document. 

The following traits define the modified 33-bus test 

system, which is an adaption of the IEEE 33-bus 

test system: 

The substation comprises seven zones and has a 

nominal voltage of 13.8 kV. Its substation 

transformer at bus 1 has a capacity of 3 MW. 

• The loading factors for the three time segments 

under consideration are 80%, 60%, and 100% of 

the nominal value, respectively. The nominal 

demand for each bus is displayed in Table I. 

• Tables II and III, respectively, contain data for the 

new and current distribution branches002E

Figure 1. Illustrative 33-bus test system. 

2.  Particle Swarm Optimization:  

PSO is a computational optimization method that 

draws inspiration from the social dynamics of 

natural systems, such as fish schools and bird 

flocks. It was developed as an optimization 

technique to find the optimal response within a 

search space. 

Here's a brief rundown of how PSO functions: 

Initialization: To begin, the algorithm generates a 

population of particles, or possible solutions. Any 

particle in the search space represents a likely 

solution. 

Objective Function: A function that must be 

minimized or maximized defines the optimization 

challenge. 

Movement and Update: Based on its own 

involvement (personal best) and the communal 

experience of the swarm (global best), each particle 

moves through the search space by modifying its 

position. Particles travel in an iterative manner, 

guided by velocity vectors that change their 

positions. 

Evaluation: Using the objective function as a 

basis, each particle's fitness is assessed. 

Update Personal and Global Bests: A particle 

updates its personal best if it finds a solution that is 

better than its previous best. In the same way, if the 

worldwide best solution 

Termination: Until a finish condition is content, 

such as attainment a maximum number of 

repetitions or arriving at a workable solution, the 

algorithm iterates through these phases. 

:  

 

Figure 2. Flowchart of PSO 

 

PSO is renowned for its ease of use and potency in 

effectively searching and utilizing the search field. 

It has been used in a variety of optimization 

scenarios, such as neural network training, 

engineering design, and other fields where 

identifying the best solution is essential. 

 

3.  Grey Wolf Optimization Algorithm 

Metaheuristic optimization procedures are getting 

familiar in requests based on engineering due to 

easy concepts, simple implements that do not 

require large amount of system information. The 

modern optimization schemes are capable to 

bypass local optima and commonly used in a 

extensive range under dissimilar disciplines. Many 

procedures are present that are based on multiple 

combinative optimization difficulties.  GWO is 

new approach [31] introduced in 2016. It is 

enthused by the grey wolf’s social conduct that 
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working in leadership hierarchy for strategy to 

perform in hunting. Grey wolves are the top-level 

marauders; living in group of 5 to 15 wolves. The 

strategy of hunting classified into four groups α, β, 

∆, and Ω. α-wolves taken as leader of the group 

that has authority of making decision for hunting 

place, asleep place and so on. α-wolves are leading 

and instruct others to follow them. They perform a 

main role to produce new solutions. β-wolves 

comes to next level they assistant α-wolves in 

decision-making. They take decision when alpha 

wolves are approved away. They listen to the α-

wolves decision and deliveranswer to the α-wolves. 

The ∆-wolves are called subordinate wolves. They 

belong to elders, hunters, sentinels, caretakers and 

scouts. ∆-wolves follow alphas and betas and 

manage Ω-wolves. Ω-wolves are in lowest rank 

and play the role of scapegoat. They follow all 

other leading wolves. They are not significanthelp 

others from oppositeinteriorglitches. 

Three types of hunting are distinguished in GWO: 

tracking, encircling, and assaulting the prey during 

the exploration and exploitation phase. Exploitation 

is the process of finding the best solution while 

encircling and attacking the prey, while tracking is 

the process of locating the best solution throughout 

a global search space. 

When encircling, the prey's location is identified. 

During this stage, the prey's position vector is 

established, and searchers modify its location by 

determining the optimal solution to the equation 

below: 

𝐷⃗⃗ = ⌈𝐶 . 𝑋𝑃⃗⃗ ⃗⃗  (𝑘) − 𝑋 (𝑘)⌉ 

𝑋 (𝑘 + 1) = 𝑋𝑃⃗⃗ ⃗⃗  (𝑘) − 𝐴 . 𝐷,⃗⃗  ⃗ 
 

𝑘: current iteration, 𝐴  and 𝐶  : constant vectors, 

location vector of the prey,  𝑋  : position vector, | | : 

complete value, and ‘⋅’ : element-by-element 

reproduction. The vectors 𝐴   and 𝐶  are: 

𝐴 = 2𝑎 . 𝑟 − 𝑎  

𝐶 = 2. 𝑟 , 
𝑎  : reductions linearly from 2 to 0 and 𝑟 : accidental 

value in [0, 1]. The location of the search agent [𝑋, 

𝑌] is accustomed based on the site of the prey 

gained so far [ 𝑋∗, 𝑌∗ ]. 𝐴  and 𝐶 attuned for 

achieving best agent in dissimilar places. 

In hunting phase, 𝛼-wolves direct other wolves. 

Initially, 𝛼-wolve is first best answer, β-wolves: 

second-best answer and ∆-wolves is the third best 

solution. These three solutions are used to update 

the location of the lowest position solution omega. 

The hunting approachcalculation is given below: 

 

𝐷𝛼⃗⃗⃗⃗  ⃗ = |𝐶1⃗⃗⃗⃗ ∗  𝑋𝛼⃗⃗ ⃗⃗  − 𝑋 | 

𝐷ᵦ⃗⃗⃗⃗ = |𝐶2⃗⃗⃗⃗ ∗  𝑋ᵦ⃗⃗  ⃗ − 𝑋 | 

𝐷𝛿⃗⃗ ⃗⃗  =|𝐶3⃗⃗⃗⃗ ∗  𝑋𝛿⃗⃗ ⃗⃗  − 𝑋 | 

𝐷⃗⃗ 𝛼, 𝐷⃗⃗ 𝛽, and 𝐷⃗⃗ 𝛿 : modified detachment vector amid 

the 𝛼, β, and ∆-wolve location to the other wolves 

and 𝐶 1, 𝐶 2, and 𝐶 3 represents constant vector used 

to adjust detachment vector (eq. 3).  𝑋 location of 

vector of other grey wolf (Ω). 

𝑋1⃗⃗⃗⃗ = 𝑋𝛼⃗⃗ ⃗⃗  − 𝐴1⃗⃗⃗⃗ ∗ (𝐷𝛼⃗⃗⃗⃗  ⃗), 

𝑋2⃗⃗⃗⃗ = 𝑋ᵦ⃗⃗  ⃗ − 𝐴2⃗⃗ ⃗⃗ ∗ (𝐷ᵦ⃗⃗⃗⃗ ), 

𝑋3⃗⃗⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗  − 𝐴3⃗⃗ ⃗⃗ ∗ (𝐷𝛿⃗⃗ ⃗⃗  ), 

where 𝑋 1 : new location vector obtained using α-

wolves situation𝑋 𝛼, and 𝐷⃗⃗ 𝛼,𝑋 2: new location vector 

gained using β-wolves position 𝑋 𝛽and 𝐷⃗⃗ 𝛽, 𝑋 3 : new 

position vector from ∆-wolves situation𝑋 𝛿  and 𝐷⃗⃗ 𝛽, 

and 𝐴 1, 𝐴 2, and 𝐴 3; coefficient vectors (eq. 2). 

 

𝐴 (𝑘 + 1) =
∑ 𝑋𝑖⃗⃗  ⃗
𝑛
𝑖=1

𝑛
, 

where 𝑋 (𝐾 + 1)1  is new situation vector as 

average of all circumstances of α,β and ∆-wolves 

and 𝑛 representing α,β and ∆-wolves (𝑛 = 3). 

Attacking phase helps to classify local solutions. 

Local search performs variation in 𝐴 1  in the 

interval [-2a to +2a]. If the value of constant vector 

|𝐴| < 1 then local search is achieved. With these 

machinists, search and update of situations 

performed to obtain optimal value. Search of prey 

phase is helping in deviating each other to find for 

prey and join to attack prey. If |𝐴 |> 1 then search 

deviates from prey and bargains the new prey.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of GWO algorithm 
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𝐼𝑏𝑟 = 𝐵−1𝐼𝑏  

Using a B matrix, the link between branch currents 

and bus currents is brought about by the complex 

branch powers and bus powers. At the sending and 

receiving ends of the bus, the system's branch 

power losses Lbr produce different voltages. 

Similar to how bus/branch currents are established, 

so too is the relationship between branch powers 

and bus powers. 

𝑆𝑏 = 𝐵[𝑆𝑏𝑟 − 𝐿𝑏𝑟] 

𝑆𝑏𝑟 = 𝐵
−1𝑆𝑏 + 𝐿𝑏𝑟 

𝑆𝑏𝑟represents the apparent power of the branch. Sb 

is the perceived power of the bus. The matrix of 

bus incidence is B. We call the branch losses 𝐿𝑏𝑟. 

Complex quadratic equations make up the power 

flow equations. As in (4), a new variable called 

𝛽𝑙𝑚  is established for a branch that connects the lth 

and mth buses. 

𝛽𝑙𝑚 = 𝑉𝑙(𝑉𝑙
∗ − 𝑉𝑚

∗) 

where 𝑉𝑙 is the lth bus voltage.𝑉𝑙
∗  is the voltage 

conjugate solution of the lth bus. The branch 

control of the ‘lm’ th element is articulated in terms 

of 𝛽𝑙𝑚 as in (5). 

 

𝑆𝑙𝑚 = 𝑃𝑙𝑚 + 𝑗𝑄𝑙𝑚 = 𝛽𝑙𝑚 𝑌𝑙𝑚
∗  

𝛽𝑙𝑚 = 𝑆𝑙𝑚  𝑍𝑙𝑚
∗  

𝑉𝑚 = 𝑉𝑙 −
𝛽𝑙𝑚
∗

𝑉𝑙
∗  

𝐼𝑙𝑚 = (
𝛽𝑙𝑚
∗

𝑉𝑙
∗ )𝑌𝑙𝑚 

The thorough flowchart is shown in figure 3` 

𝑆𝑙𝑚 = 𝑆𝑚𝑙 − 𝐿𝑙𝑚 

𝐿𝑙𝑚 =∑𝐿𝑙𝑚
𝑟  

𝐿𝑙𝑚
𝑟 = 𝑆𝑚

𝑠𝑝𝑒𝑐𝑟−1 − 𝑉𝑚
𝑟−1𝐼𝑚

∗  

𝑆𝑏𝑟
𝑟𝑒𝑐 = 𝑆𝑏𝑟

𝑠𝑒𝑛𝑑 − 𝐿𝑙𝑜𝑠𝑠 

Max (𝐿𝑙𝑚
𝑟 ) ≤ 0.01 

Where 

r is the repetition count. 

𝐿𝑙𝑚 is lm division losses. 

Sm
spec is quantifiedseeming power at mth bus. 

Vm is mth bus power. 

Im is mth bus present. 

In light of the voltage stability restriction, the 

algorithm's constraints are being examined 

(Ramana, Ganesh, and Sivanagaraju 2010). When 

transmission losses are lower, the algorithm will 

operate more quickly in those systems. The 

transmission loss of each element in its rth iteration 

must be less than the tolerance value in order to 

meet the convergence requirements.[6] 
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4. Conclusions  

 

The emergence of fast charging technology has 

introduced additional challenges for the distribution 

system and EV charging infrastructure. While fast 

charging improves user convenience by 

significantly reducing charging times, it also 

imposes greater strains on the grid and charging 

stations. Careful planning and management are 

essential to mitigate the possible adverse effects of 

fast accusing on the circulation system and 

charging infrastructure. 

In recent years, there has been a surge in studies 

focusing on optimal EV charging station locations 

and the impacts of EV demand on the circulation 

network. Researchers have explored various 

strategies for deploying EV charging stations, 

aiming to minimize voltage deviations, enhance 

system reliability, and reduce overall power losses. 

Additionally, studies have investigated different 

investment models for deploying EV charging 

infrastructure. However, there has been limited 

attention given to understanding the preferences 

and behaviors of EV users when selecting charging 

station locations. 

In summary, the work mentioned here appears to 

provide a comprehensive overview of the various 

aspects involved in optimizing charging station 

locations, including problem formulation, solution 

techniques, and considerations such as EV load 

modeling, uncertainty handling, renewable energy 

integration, and V2G strategies. Metaheuristic 

algorithms are highlighted as effective tools for 

achieving better optimization results in this context. 

Understanding the preferences and behaviors of EV 

users is crucial for effective planning and 

deployment of charging infrastructure as a future 

scope. By considering factors such as travel 

patterns, charging habits, and user preferences, 

planners can optimize the placement of charging 

positions to better meet the needs of EV users 

while minimizing the impact on the distribution 

network. This holistic approach will be essential for 

ensuring the successful addition of EVs into the 
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conveyance system while maintaining grid stability 

and reliability. 
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