
iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

Weihan Huang, Volume 13 Issue 4, pp 19-24, April 2025

Natural Language Understanding by

Natural Language Programming

Author : Weihan Huang

Master of Computer Science Department, State University of New York, at Buffalo, U.S.A.

Master of Physics Department, National Hsing Hua University, Taiwan

Email :weihanh@yahoo.com.tw

DOI: 10.26821/IJSHRE.13.04.2025.130401

ABSTRACT

The main purpose of this paper is to introduce an

advanced programming technique "dynamically run"

in Natural Language Programming. And I will show

how this technique is used in natural language

understanding. This technique not only greatly

simplifies the source codes, but also reduces the

machine code loading time complexity initially.

Meanwhile, I design a parsing method that scans the

sentence once and which uses additional list and

stack possibly for the context free structure. To get

the syntax and semantics of the sentence, each word

is run as a function which is defined inside one file

already. And the file of this function is loaded right

before it is run dynamically. Lastly, to complete the

understanding of natural language sentences, I

introduce the concepts of knowledge representation

and information flow.

Keywords: Language, Natural,

Programming, Understanding

.

1. INTRODUCTION TO

"DYNAMICALLY RUN"[1]

If we would like to write a calculator that can

evaluate any arithmetic expression.

"(23*3+5)/2"

"(5+20)*(2+3)"

"5*(2^3+1)"

"9^(1/2)*(3+2*5)"

Generally speaking, we should write a compiler for

the arithmetic expressions. Fortunately, Natural

Language Programming provides a function

"dynamically evaluate"; it can evaluate any Natural

Language Programming function expressions.

Because mathematical expressions are also Natural

Language Programming expressions, so we can use

"dynamically evaluate" to evaluate mathematical

expressions inside a string. The syntax[2] is

dynamically evaluate $string$: return $object$

If the string contains a procedure statement, not a

function statement, we can use "dynamically run".

The following are two examples of "dynamically

run".

dynamically run "write a row 66;";

dynamically run "write a row (6+7); write a row

(6*7); ";

Because the function call inside the string of

https://doi.org/10.26821/IJSHRE.13.04.2025.130401

iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

©iJournals Publications 2025 | 20

"dynamically run" could use function that has not

been loaded from class files or code books, we can

use the function "load natural language programming

file $string$" to load the file firstly. Examples are in

the following.

load natural language programming file "enNLP :

public codebooks : math : basic :

integer.codeBook";

load natural language programming file "enNLP :

public codebooks : math : basic :

other.codeBook";

This is a brief introduction to "dynamically run".

Later we will use it for natural language

understanding to run the function defined for an

arbitrary word given.

2. INTRODUCTION TO NATURAL

LANGUAGE UNDERSTANDING

2.1 Segment Words in Chinese Sentence

The Chinese sentence example is

 “firstlywewillwriteourfirstchineseprogram”

Assume we have a dictionary of words in lexicon

order :

"Chinese", "ChineseProgram" "first" "firstly", "our",

"program", "we", "will", "write".

Then we can use a recursive function[3] to segment

the Chinese sentence. The problem is that there are

two possible parses :

"Firstly, we will write our first Chinese program."

"Firstly, we will write our first ChineseProgram."

Here I will choose the segmentation with smaller

number of words, i.e. supporting longer

words than shorter words, because longer words

could have more special intended meanings. So I will

choose the second segmentation here :

"Firstly, we will write our first ChineseProgram."

2.2 Parse by Scanning From Left to Right

One Time

Instead of using a chart parser[4] or attribute

grammar[5], my parse method is to scan from the

leftmost of the sentence to the rightmost of the

sentence. Since the scan is only one time, lists and

stacks[6] are possibly used while parsing the

sentence for its context free[7] feature. In my parse

method, each word of the sentence is associated with

a programming function "word function".

An intuitive approach is to use if-then-else to match

the word and run the associated "word function". But

think of how many words are in the dictionary,

possibly 3000-6000 commonly used words, so the

logical tree must be very long. Therefore, reading in

the long logical tree if-then-else should require a lot

of time initially. And note that most of words are

unnecessary to load for the sentence we are reading.

So the problem is how to load functions of the words

in use only but not those unnecessary words.

My solution is to use "dynamically run" which is

mentioned in the first section. And because the "word

function" is defined in an independent file (code

book file) intentionally, we can firstly load code book

file and then run the "word function". Therefore, we

can parse the sentence by loading and then running

all the "word functions".

for each $word$ in $sentence$, do {

iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

©iJournals Publications 2025 | 21

 load natural language programming file

($word$+" function.code book");

 dynamically run ($word$+" function");

}

2.3. Result of the Parsing

The sentence syntactic-semantic structures are parsed

to be shown below

input : "Firstly we will write our first

ChineseProgram."

output :

Event : we(Subject) write(Verb)

ChineseProgram(Object)

Event modifier : firstly(number 1 goal to achieve,

Event)

Event modifier : will(merged with firstly)

Subject : we(You and I)

Verb : write(how? unknown in knowledge database)

Object : ChineseProgram(program written in

Chinese)

Object modifier : our(possession of we)

Object modifier : first(number 1)

Note that the meaning of the verb "write" is unknown

yet. It is missing in the knowledge database and this

problem of know-how will be proposed in the

information flow. The concepts of knowledge

database (knowledge representation) and information

flow will be discussed in the following two sections

to complete the understanding of natural language

sentences.

3. INTRODUCTION TO

KNOWLEDGE REPRESENTATION

To understand deeper the words in the natural

language sentences like "I" "You" "Write", we may

need to query a knowledge database such as

"Who am I?"

"Who are you?"

"How do we write a ChineseProgram?"

So we can actually prepare some facts in the database

to answer these questions. For example :

I am Weihan.

You are Little Prince.

Weihan is the author of the book Natural Language

Programming.

Little Prince is the reader of the book Natural

Language Programming.

Hence these answer the first two questions "Who am

I?" and "Who are you?". But the knowledge database

currently does not have knowledge about the answer

of "How do we write a ChineseProgram?". This

problem will result in two issues, firstly we will need

to propose this question in the "information flow" of

the sentence "Firstly we will write our first program".

And secondly, we need to think of a representation

for procedural semantics[8] for "how do we write?"

And these will be answered in the next section

"Information flow".

Moreover, the knowledge database can have the

ability of inference to deduce new facts. For example,

from the two sentences above "I am Weihan" and

“Weihan is the author of the book Natural Language

programming", we can infer that "I am the author of

the book Natural Language Programming". Similarly

we can infer the fact "You are the reader of the book

Natural Language Programming”.

To represent the knowledge in the knowledge

database uniformly, I will use a directed graph[9]

as the knowledge representation.

iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

©iJournals Publications 2025 | 22

Firstly, we need to distinguish two types of nodes

"unique node" and "separate node". A "unique node"

is always referred to the unique one node in all

context. Examples of unique nodes are like "I",

"You", “Weihan", "Little Prince", "Book of Natural

Language Programming". And a "separate node" is a

node that is not a unique node. Examples of "separate

node" are "author", "reader", "name".

A node has links fanned out and links fanned in. And

a link contains a string and one from-node and one

to-node.

Example of "I am Weihan" is represented in the

following graph :

 "I" --be --> “Weihan”

 <--be –

Example of "Book of Natural Language

Programming" is

“Book -own-> “name” -be-> “Natura

Natural <-belong to- <-be- Language

Language Programming”

Programming”

“Book -own-> “author” -be-> “Weihan”

Natural <-belong to- <-be-

Language -own-> “reader” -be->” Little

Programming” <-belong to- <-be- Prince”

We can read from the left to the right that "The

author of Book Natural Language Programming is

Weihan.” and read from right to left that “Weihan is

the author of Book Natural Language Programming".

Lastly for the representation of procedural word like

"write", we will talk about it in the next section of

Information Flow.

4. INTRODUCTION TO

INFORMATION FLOW

A sentence is not independent, its appearance will

possibly affect the future reading of a paragraph. So

we will say that the sentence carries some

information to be transferred toward next reading.

For the sentence "Firstly, we will write our first

ChineseProgram", let's review the result of the parse :

Event : we(Subject) write(Verb)

ChineseProgram(Object)

Event modifier : firstly(number 1 goal to achieve,

Event)

Event modifier : will(merged with firstly)

Subject : we(You and I)

Verb : write(how? unknown in knowledge database)

Object : ChineseProgram(program written in

Chinese)

Object modifier : our(possession of we)

Object modifier : first(number 1)

We can read from these outputs that there are 2

expectations to fulfill and one question to answer.

1. Event is number 1 goal to achieve

2. Number 1 ChineseProgram will be written.

3. How do we write a ChineseProgram?

These 3 points are just the information flow that the

current sentence carries to move on to the future.

Point 2 is important because this program will be the

first program we will write. Point 3 points out a

question that the knowledge database does not have

an answer to this question yet.

To fulfill the expectations in Information Flow,

iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

©iJournals Publications 2025 | 23

following the sentence, the book just shows a first

ChineseProgram to write.

*********** first.enProgram *************

write a row "Hello world!";

If we have done writing the first program, then the

expectations of the information flow will be fulfilled.

To do this, we need to know how to write a

ChineseProgram, which is the point 3 of the

information flow. The procedure of how to write is

provided by the author to the reader by the following

knowledge representation for procedural semantics.

"How" -type-> "verb" -name-> "write"

“write” -type-> "we write ChineseProgram"

 -procedure->{decide the directory name;

decide the program name;

 decide the program codes;

 edit the codes;

 compile the codes;

 run the codes;

 }

Here each statement of the procedure is

corresponding to a Natural Language Programming

function defined. So after running these functions the

ChineseProgram is written, compiled and run

automatically. And this is just the power of

information flow.

5. CONCLUSION

I have shown you an advanced programming

technique "dynamically run" in Natural Language

Programming. And I used it for natural language

understanding to run the function defined for an

arbitrary word given. This technique not only greatly

simplifies the source codes, but also reduces the

machine code loading time complexity initially. The

result of sentence syntax and semantics is given by

running the word function of each word inside the

sentence from left to right.

And to complete the understanding of natural

language sentences, I introduced the concepts of

knowledge representation and information flow. In

knowledge representation I gave a uniform directed

graph representation for the knowledge system. And

for information flow I showed how to fulfill the

expectations and answer the question of how to write

a ChineseProgram. In the future I look forward to

automatically reading the book tutorial and making

automation of writing a program. Lastly, I will need

to build a run time console, comparing the codes and

the output, to learn the cause-effect of the program

and its output automatically.

6. REFERENCES

[1] Dynamically run Natural Language Programming

in English, LAP LAMBERT Academic Publishing

Book, Weihan Huang, 2022-08-30, Chapter 5

Advanced Programming, Section 8 Dynamically Run

[2] Syntax

https://en.wikipedia.org/wiki/Syntax

[3] Recursive function

https://en.wikipedia.org/wiki/Recursion_(computer_s

cience)

[4] Chart parser

https://en.wikipedia.org/wiki/Chart_parser

[5] Attribute grammar

https://en.wikipedia.org/wiki/Attribute_grammar

https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Chart_parser
https://en.wikipedia.org/wiki/Attribute_grammar

iJournals: International Journal of Software & Hardware Research in Engineering

ISSN:2347-4890, ijournals.in/ijshre

Volume 13 Issue 4, April 2025

©iJournals Publications 2025 | 24

[6] Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_ty

pe)

[7] Context free

https://en.wikipedia.org/wiki/Context-free_grammar

[8] Semantics

https://en.wikipedia.org/wiki/Semantics

[9] Directed graph

https://en.wikipedia.org/wiki/Directed_graph

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Directed_graph

