Failure Mode and Effect Analysis of **Automotive Charging System** ### ¹Ved Parkash, ²Deepak Kumar, ³Chandan Kumar, ⁴Rakesh Rajoria ¹M.Tech. Scholar, Poornima College of Engineering, Jaipur ²Ph.D Scholar, Malviya National Institute of Technology, Jaipur ³Deptt. Of Mechanical Engg., Swami Keshvanand Institute of Technology, Jaipur ⁴Service Engineer, Lucas Indian Service Limited, Jaipur #### ABSTRACT: Failure Mode and Effects Analysis (FMEA) technique is used to identify the potential failure modes, estimates the causes and its effects, and determine what could eliminate or reduce the chance of failure. The results of the analysis can help the analysts to identify and rectify the failure modes that have a detrimental effect on the system and improve its performance during the various stages of design and production. The intention of this research paper is to find out the different failure modes of automotive charging system using FMEA technique and rectify the field complaints regarding its failure by necessary corrective actions. **Key words:** FMEA, Failure Mode, RPN, Severity, etc. #### 1. INTRODUCTION: Failure Mode and Effects Analysis (FMEA) was developed by reliability engineers in the 1950s. FMEA is an analysis technique used for defining, identifying and eliminating known and/or potential failures, problems from system, design, process and/or service before they reach to the customers. The results of the analysis work can help the analysts to identify and rectify the failure modes that have a detrimental effect on the system and improve its performance during the stages of design and production. #### 2. CHARGING SYSTEM: An automobile battery supplies a sufficient amount of energy to the automobile's electrical components such as starting motor, head light and wipers. However, the capacity of the battery is limited and is not capable to provide continuous power to the automobile. Therefore, it is required for the battery to always be fully charged so that it supplies the required amount of electricity at the required time to each of the electrical components. Consequently, the automobile requires a charging system to produce electricity and keep the battery in fully charged condition. When the engine is in operation; the charging system produce electricity to both recharge the battery and to supply required amount of electricity to the electrical components. #### 3. ALTERNATOR: An alternator is an electromechanical device that converts mechanical energy to electrical energy in the form of alternating current. Most alternators use a rotating magnetic field with a stationary armature but occasionally, a rotating armature is used with a stationary magnetic field; or a linear alternator is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators. The Alternator output is used to charge the battery; it also supplies power to all the electrical loads in the vehicle. The inbuilt full wave Rectifier converts the A.C into D.C output. #### 4. ADVANTAGES OF ALTERNATOR: - Better efficiency due to heat dissipation by two fans provided in the Rotor. - Less weight and compact in Size. - Low operational noise. #### 5. HOW TO USE FMEA? - Identify all the possible failure mode of a system. - Identify all the possible causes of failure of a system. - Create a column with assigned value for frequency of occurrence (0), degree of severity (S) and chances of detection (D). The value assigned will be from 1 to 10, with 1 very unlikely a failure occur and 10 very likely occurrence, 1 is for very less effect of failure on customer and 10 shows extremely severe, 1 for very likely to detect and 10 means extremely difficult to detect. - After this, Risk Priority Number (RPN) is calculated by multiplication of O, S and D. - The larger value of RPN shows that the failure is very much effective to the customer and is required to remove or rectify first than the - lower RPN failure problem. This RPN value helps in deciding the priority to focus on each failure. - After this, the required corrective action is taken to overcome or rectify the problem. | | Table 1.1: FMEA RESULT TABLE OF CHARGING SYSTEM Customer Complaint / Mode 1: Frequent Battery run down. | | | | | | | | | | | |-------------------|--|--|-------------------------------------|----------------------------------|--|------------------------------------|--------------------------|-----------------------|--|--|--| | Probable
Cause | Root
Cause | Frequency
of
occurrenc
e (1-10) | Degree
of
Severit
y (1-10) | Chance of
Detection
(1-10) | Risk
Priority
Number
(1-
1000) | Failure
Detectio
n
Method | Specificatio
n limits | Correctiv
e Action | | | | | | | | | | | | | | | | | The above sample table 1.1 FMEA shows all the necessary details which are required for the implementation of Failure Mode and Effect Analysis technique to any system and helps in reducing the chances of failures. #### **6. ALTERNATOR FIELD COMPLAINTS:** - 1) Battery getting discharged: If battery is not getting charged, then it requires checking the failure of alternator. It may get discharged due to open connection of alternator with battery. The particular failure reason is find out and then rectifying it. - 2) Warning lamp glows constantly, - 3) Warning lamp does not glow, - 4) Regulator intermittent / No regulation - 5) **Stator overheated / burnt:** Stator may get overheated due to overload and continuous running of alternator which fail the insulation and hence stator burn. - 6) Rectifier Positive / Negative failure: During rectifier positive failure of alternator, it give zero output of positive cycle of input and during negative failure, it give zero output to input of negative cycle. To overcome these types of failure, respective diode can be replaced. To find the failure diode, use an ohmmeter for testing the diodes, both regulator diodes and rectifier diodes. A diode is a "one way valve" for electricity, so each diode should show some resistance reading on the meter one way, and no reading, or infinite resistance the other way. If a diode will have infinite resistance both ways, then it shows that it is faulty and replaces it. #### 7. ALTERNATOR TESTING: The factors which affect the life of an Alternator include: - Loose and excess fan belt tension. - Fused warning lamp bulb. - Loose Battery cables & warning lamp socket connections. - Carrying welding without out arc disconnecting battery connections. #### Testing of an alternator (on Vehicle) using Clamp Meter: Fig.1.1: Testing of Alternator Charging Current using clamp meter The Value of alternator charging current depends on Electric Loads, Engine RPM and Battery charge status. Fig.1.1 gives the testing of alternator charging current using clamp meter. #### 8. FMEA RESULT ANALYSIS: The FMEA result tables for charging starting are as follows from table 1.2 to table 1.5. These all tables gives detail about different failure mode, their probable and root causes, how frequently these failures occur in number between 1 to 10 with 1is for very unlikely occurrence and 10 for very likely a failure occur. The degree of severity or the effect of failure on customers or severe (S) number in between 1 to 10, with 1 shows little effect of failure on customer and 10 means very extremely severe. After this the chance of detection (D) of each failure is identified and a value is assigned in between 1 to 10, with 1 having the chances of easily detection and 10 means very difficult in detection. Thereafter, Risk Priority Number is calculated and then different failure detection methods are obtained with the necessary corrective actions for the charging system. | | Table 1.2: FMEA RESULT TABLE OF CHARGING SYSTEM (MODE 1) | | | | | | | | | | | | |--|--|--------------------------------|------------------------------------|--------------------------------------|--|---|---|--|--|--|--|--| | Custom | er Complaint / Mode | | | | | tom: warning lamp do | | gn key is "ON" | | | | | | Probable
Cause | Root Cause | Frequency of occurrence (1-10) | Degree
of
Severity
(1-10) | Chance
of
Detectio
n (1-10) | Risk
Priority
Number
(1-1000) | Failure Detection Method | Specification limits | Corrective Action | | | | | | a) Battery
is in very
poor state
of charge /
drained /
run down | a) Leakage current due to various direct electrical loads bypassing the Ignition key switch. | 2 | 6 | 2 | 24 | a) Switch off the Ignition key, b) Remove the negative terminal from the battery c) Connect the clamp meter prods in ammeter mode in series with negative post & terminal | Must be " 0 " amps | Ensure that the loads are connected thru ' switches. Not to connect directly to the battery | | | | | | | b) Usage of starter for
prolong / cont. cranking
could reduce the battery
capacity drastically. | 7 | 7 | 5 | 245 | a) Check for cable
resistance, cable length
should not be more than 5
mtrs. | a) Battery capacity
should not be less
than 70% | Check cable ends
for loose
connections, | | | | | | | c) Battery voltage may
be less than 8 Volts. | 3 | 9 | 2 | 54 | With the help of clamp
meter the voltage between
the battery posts can be
measured | OCV : 12.5 V
Minimum | Battery must be replaced if it does not meet the specifications | | | | | | b) Battery
cables
open | a) Dirty, sulphated
battery posts &
terminals which avoid
conductivity / loose
term on posts | 8 | 7 | 3 | 168 | Decolouration & worn out
battery posts, Visible &
shaky terminals | | cable ends must
be cleaned &
soldered for good
coductivity, to
minimise voltage
drop | | | | | | circuit /
posts &
terminals
dirty | b) Usage of graphite /
MT Grease instead of
petroleum jelly /
vaseline, increases
insulation | 8 | 6 | 2 | 96 | Look for dirty / sulphated battery posts & terminals. | | Petroleum jelly
melts & spreads
the posts to
conduct whereas
the grease
becomes insulated | | | | | | | c) Cable between
warning lamp & Ignition
key switch open | 4 | 5 | 3 | 60 | Check the conductivity of the cable | | Use the right cable | | | | | #### Table 1.3: FMEA RESULT TABLE OF CHARGING SYSTEM (MODE 2) Customer Complaint / Mode 2: Battery run down. Symptom: Warning lamp is "ON" while engine is running & No output | Probable
Cause | Root Cause | Frequency
of
occurrence
(1-10) | Degree
of
Severity
(1-10) | Chance of
Detection
(1-10) | Risk
Priority
Number
(1-1000) | Failure Detection
Method | Specifications
limit | Corrective Action | |----------------------------------|---|---|------------------------------------|----------------------------------|--|-------------------------------|--|----------------------------------| | a) Faulty
rectifier
bridge | a) Solder melted in
the junctions | 2 | 7 | 3 | 42 | Visual & continuity check | Values as per specs. | Solder with proper iron. | | b) Stator
open circuit | a) Poor soldering of
phase connections | 2 | 6 | 3 | 36 | Visual & continuity check | Res value should
read around 0.12
Ohms | Replace the stator if necessary. | | | b) Winding coil open
circuit | 3 | 7 | 4 | 84 | Visual & continuity check | | Replace the stator. | | c) Stator
winding
short | a) Poor insulation | 2 | 7 | 3 | | a) Series lamp
check | Series lamp must glow | Replace the stator. | | Short | | | | | | b) Check with 500 V
Meggar | should read Infinity | | | | b) Physical damage | 2 | 7 | 2 | 28 | Visual check | | Replace the stator. | # OUYWALS International Journal of Software & Hardware Research in Engineering ISSN No: 2347-4890 | d) Aux diode
open | A) Semi conductor (DIODE) has become insulator which can not rectify / detect the ac current waves in self excitation circuit | 6 | 6 | 3 | 108 | Check with
multimeter | One side the diode
should show
continuity,
otherside no
continuity | Replace the rectifier assy if necessary. | |------------------------|---|---|---|---|-----|--------------------------------|--|--| | | b) Warning lamp
holder pin earthing | 4 | 5 | 2 | 40 | Check the cluster for earthing | | Replace the plastic holder. | | e) Faulty
regulator | a) F & A leads open in
the regulator | 5 | 6 | 2 | 60 | Visual check for open leads | | Change if necessary. | | f) Fuse
blown | a) Reversal of polarity | 3 | 8 | 7 | 168 | Check for the correct polarity | | Check the battery. | | | Table 1.4: FMEA RESULT TABLE OF CHARGING SYSTEM (MODE 3) | | | | | | | | | | | |---|---|--|------------------------------------|----------------------------------|--|---|--|--|--|--|--| | | - | Customer Con | plaint / MO | DE 3: Batter | y does not ch | arge properly / warning | g lamp flickers | | | | | | Probable
Cause | Root Cause | Frequency
of
occurrenc
e (1-10) | Degree
of
Severity
(1-10) | Chance of
Detection
(1-10) | Risk
Priority
Number
(1-1000) | Failure Detection
Method | Specifications
limit | Corrective Action | | | | | a) Loose fan
belt | Loose adjuster
bracket | 2 | 5 | 2 | 20 | Check for the tension | 10 to 15 mm when
pressed midway in
longest point | Check for adjuster bracket
&replace if necessary | | | | | b) Very high
resistance in
the warning
lamp / Loose
Lucar
connection | Warning lamp not as per specs | 2 | 6 | 2 | 24 | Check the power of
the warning bulb &
loose connections | 12 Volts : 2.2
Watts, filament
with Resistance
recommended by
OE | Check for loose connections,
Use proper warning lamp | | | | | c) Dirty /
faulty slip
rings | a) Highly carbonised
/ dirty / scoring slip
rings | 5 | 6 | 3 | 90 | Visual check | | Clean slip rings with lead free petrol | | | | | d) Faulty
regulator | a) F (Field) & A
(Armature) leads
open in the
regulator | 5 | 6 | 2 | 60 | Visual check for open
leads | | Change if necessary | | | | | | b) Electronic
components inside
the regulaor
defective due to fair,
wear & tear | 8 | 7 | 3 | 168 | Check the regulator with ARTD | Values as per operating manual | TR Mode: 0.49 to 0.53
Regulator cut in must be 14.2
to 14.7 v & 27 to 28 v for 24v
system | | | | | e) Faulty
rectifier
bridge (poor | a) Solder melted in the junctions | 2 | 7 | 3 | 42 | Visual & continuity check | Values as per specs. | Solder with proper iron. | | | | | solder) | b) Diodes open
circuit | 4 | 7 | 3 | 84 | Check with
multimeter | One side all the diodes should show continuity, | Replace the rectifier assy if necessary. | | | | | | Table 1.5: FMEA RESULT TABLE OF CHARGING SYSTEM (MODE 4) Customer Complaint \ Mode 4: Battery is charging / warning lamp glows "DIM" when engine is running | | | | | | | | | | |---------------------------|--|--|---|--------------------------------------|---|-----------------------------|-------------------------|---|--|--| | Probable
Cause | Root Cause | Frequency
of
occurrenc
e (1-10) | Degree
of
Severit
y (1-
10) | Chance
of
Detectio
n (1-10) | Risk
Priority
Numbe
r (1-
1000) | Failure Detection
Method | Specifications
limit | Corrective Action | | | | a) Defective
Aux diode | A) Semi conductor
(DIODE) has become
insulator which
cannot rectify / detect
the ac current waves
in the self excitation
circuit | 6 | 6 | 3 | 108 | Check with multimeter | Values as per specs. | Check the diode connections
& repair | | | otherside no continuity. | b) Stator
open circuit | a) Poor soldering of phase connections | 2 | 6 | 3 | 36 | Visual & continuity check | | Replace | |---|---|---|---|---|-----|---|---|--| | | b) Winding coil open circuit | 3 | 7 | 4 | 84 | Visual & continuity check | | Stator assembly | | c) Improper
Warning
lamp | a) Poor quality /
wrong bulb | 4 | 5 | 3 | 60 | Check the warning lamp
/ LED | 12 Volts : 2.2 Watts,
LED with Resistance
recommended by
OE | Replace with corrct warning lamp | | d) Battery is
in poor state
of charge | Usage of starter for prolong / cont. cranking could reduce the battery capacity drastically | 7 | 7 | 5 | 245 | a) Check for cable resistance, cable length should not be more than 5 mtrs. | a) Battery capacity
should not be less
than 70% | Check cable ends for loose
connections, Defective relays
/ EDC must be replaced by
the customer | | e) Faulty
rectifier
bridge | a) Solder melted in
the junctions | 2 | 7 | 3 | 42 | Visual & continuity check | Values as per specs | Solder with proper iron | | | b) Diodes open
circuit | 4 | 7 | 3 | 84 | Check with multimeter | One side all the diodes should show continuity, otherside no continuity | Replace the rectifier assy if necessary | #### 9. CONCLUSION: In this paper, the FMEA is carried out to investigate how failure of automotive charging system takes place. From the FMEA result table of charging, it is observed that most of the charging system failure would result in replacement of that particular failure part like poor insulation of stator winding or physical damage of stators would cause the stator to be replaced with the new one. Similarly, if the battery voltage is not as per the desired specification then it also causes the battery to be replaced. This type of failure which cause the complete of part or product of the charging and starting system in an automobile creates very much severity to the customer or in other words cause the total cost loss to the customer. FMEA technique help to the customers to find the failure cause of the parts and take all the necessary precautions in maintaining the life of the automotive charging system. #### 10. FUTURE SCOPE OF THE WORK: In this paper, the work is done on battery, starting motor and alternator. There may be failure mode and effect analysis technique applied to the various other parts of automobile i.e. - The FMEA technique can be applied to fuel injection system. - It can be applied to ignition system i.e. on battery and magneto ignition system. - The present FMEA thesis work is on Lead Acid battery, it can be applied to Li-ion battery also. #### REFERENCES: [1]. **Hu-Chen Liu, Long Liu, Nan Liu,** "Risk evaluation approaches in failure mode and effects analysis: A - literature review", Expert Systems with Applications 40 (2013) 828–838 - [2]. Kadir Cicek, Metin Celik, "Application of failure modes and effects analysis to main engine crankcase explosion failure on-board ship", Safety Science 51 (2013) 6–10. - [3]. Xiaoyan Su, Yong Deng, Sankaran Mahadevan, Qilian Bao, "An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades", Engineering Failure Analysis 26 (2012) 164–174. - [4]. **K.G. Johnson, M.K. Khan,** "A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK", *Journal of Materials Processing Technology 139* (2003) 348–356. - [5]. Hua Ye, Minghui Lin, Cemal Basaran, "Failure modes and FEM analysis of power electronic packaging", Finite Elements in Analysis and Design 38 (2002) 601–612. - [6]. P.C. Teoh, Keith Case, "Failure modes and effects analysis through knowledge modeling", Journal of Materials Processing Technology 153–154 (2004) 253–260.